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Note 

Finite- Dimensional Approximation of the Differential 
Operator in Problems of Quantum Mechanics 

Quantum-mechanical problems described by the Schrodinger equation or by the 
Faddeev equations in configurational space can be solved, with negligible excep- 
tions, only numerically. In doing so the most difficult is the approximation of the 
differential operator that enters into the equations. Finite-difference approximations 
applied usually to solve differential equations lead to cumbersome calculations and 
do not involve available a priori information on the properties of the solution. 

We shall construct such an approximation of the differential operator that will 
make an approximate operator T to coincide with the exact one T on some finite 
set of functions /xi). To this end we require the approximate operator F to possess 
the following properties 

i?‘IXi>= IX;> i=l N, ,..-, (1) 

and we will consider the Schrodinger equation 

(T+I'-E)I$)=O. (2) 

Here T is the exact kinetic-energy operator, I/ stands for the potential energy, and 
E the energy. It can be shown that with an appropriate choice of the set [xi), i.e., if 
the solution to (2) I$) can be represented by 

I$>=(E- T’ f, cilXi> (3) 
i=l 

then I$) obeys also the approximate equation 

(F+ V-E) I$) =o. (4) 

Thus, each solution to (2) is a solution to (4), but the opposite is not true, and Eq. 
(4) can have extra solutions to be rejected. 

The solution to (4) is given by (3) with coefficients satisfying the system of 
equations: 

f Cj(x,lT~'-(E-l/)-'J~~)=o 
i= 1 

(5) 

obtained by projecting (4) onto the functions T-' [xi). 
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Boundary conditions for the solution of (2) are introduced in the case of (4) with 
such a choice of the functions 1~~) that would provide a correct behaviour of I$). 
It may be easily achieved as I$ ) and 1~~) are related by (3). 

From (3) it also follows that for any x,, such that E - V(x,) = 0 the condition 
Cy= i Cixi(x,) = 0 should hold. This condition ensures the convergence of (5) at the 
point x0. To what extent the above approximation is a success depends, as usual, 
on how appropriate is the set of the functions 1~~). Equation (3) relating I$) and 
Ixi) allows the choice of the set of 1~~) that ensures the known a priori properties 
of the solution I$) to hold. For instance, the wave function of an nth excited state 
should have 12 zeros, and it is therefore natural to choose the functions [xi) having 
also n zeros. 

In order that the choice of the set [xi) be the best one, it is necessary to impose 
some condition on the approximate solution to be close to the exact one. Such a 
condition fixes not only the best choice of the set of Ixi) but also the single solution 
of (4) for that choice. The functionals the minimum of which provides the proximity 
of T and F on the solution of (4) I+) are as follows: 

f’n=I(WT-~YIICI)l (6) 

@n= 2 I(ll/il(T-~)“l~)l*~ (7) 
i= 1 

where Itii) = (E- V)-‘Ixj). 
More delicate methods may be proposed, as well, for choosing a correct solution. 

For instance, in the case when a solution of (2) is found with a good accuracy for 
one value of the energy E the solution for another value E’ can be singled out from 
the orthogonality condition 

I(IC/EItiE’)I =min. (8) 

We shall further consider the l-dimensional Schrodinger equation resulting from 
the separation of the angular dependence in the case of a spherical-symmetric 
potential V(r): then 

T,= es+??&. (9) 

The kernel of the inverse operator T;’ is given by 

(10) 

When solving the eigenvalue problem it is not difficult to compute the integrals in 
(5) as the functions Ixi) should be exponentially damping at infinity. 

Since in the scattering problem the asymptotic behaviour is as follows: 
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(x I+) N sin(kx + 6,), k2 = E, it is necessary to define the way of how integrals can 
be regularized at infinity. In the scattering theory this means the introduction of 
infinitesimal damping, that is, equated to zero only upon the calculation of all 
integrals. 

As an ilustration we shall obtain an expression for the scattering phase 6, at high 
energies k2p V(x), when 6,e 1 and the Born approximation is valid. We shall 
restrict ourselves to one function (x 1 x,) = xj,(kx + 6,) that has a correct behaviour 
at zero and at infinity. We first rewrite (5) in the form 

and calculate the integral 

I mJ dY g,(x, Y) Yj,(Y + 6,) 
0 

=(21+1)-l x-‘j~dyyl+Zj,(y+6,)+x’f’ jmdL.yl-~l(y+s,) 
x 1 

= xj,(x + 6,) - x 4v' Ph (y+6,) *h(Y+M2~Y+W+ 1)l 

-(I- 1)x'+' 
2(Z+ 1) y+16, 

6, jmdyi,(y+b) y,+,(y+6 )2 
x I 

(12) 

Here we made double use of the relations 

f [z”+‘jJz)] =Zn+$-*(Z) 

z [j,(z) z-q= -j”+,(z) Z-n. 
(13) 

The integration by parts in (12) produces the quantity lim, _ o. y’ -‘j,- ,( y + 6,). 
When I= 0, this oscillating quantity is to be put zero in conformity with the notion 
of infinitesimal damping. 

Inserting then (12) into (11) we get 

6, m s 2Z+l 0 
dx xj,(x + 6,) 

I+2 

1 j 

* dy y’ 
- 

x1 0 (Y +a,) 
,j,(y+6,)C21y+61(1+1)1 

+(1-1)x’+’ s m 4 idy + SAY + 6,) 
2(1+ 1) y+lS, 

x Y’+ ‘(Y + dJ2 

= -k3 jam dx . x2j,(kx + 6,) k2 “;ix). (14) 
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At small 6 h V/k’, when I> 1, the expansion of the integrand of (14) into a series in 
6, gives: 

dy y’-‘j/(y)+~‘+~(l~-1)~~~~] 

= -k lam dx(xj,(kx))2 V(x). (15) 

From (15) we obtain the Born approximation for the phase: 

6, = -k jam dx(xj,(kx))2 V(x). (16) 

When I= 0, the phase is also given by (16), however the expansion in 6, should be 
performed upon the integration of (14). 

Now we shall present the results of calculation for the eigenvalue problem and 
for the scattering problem for the equation: 

( 
2 e-p’x 

g2+- x +E 1 I$>=O. 

In the limiting case p = 0 (the Coulomb potential), Eq. (17) is solved exactly. 
Choosing the functions Ix) in the form: 

(X~~)=(1-ic2X)P(X)e-““, (18) 

where u2 7 -E, P(x) is a polynomial, we obtain a set of solutions including the 
exact one. In particular, for P(x) = 1 we get two solutions with K = 4 and K = f. The 
first of them is exact, and the functional F, on it vanishes, i.e., ($1 T - T111/ ) = 0. 
When p #O, the numerical calculation was carried out for the set of functions 
(X 1 xi) = (ePPx - K’X) e++. Results are reported in Table I. Solutions were selec- 
ted on the basis of the condition for the quantity 

to be minimal. 
From Table I it is seen that not very low values of the binding energy are 

obtained with high accuracy using two functions 1~~) only. An analogous situation 
occurs in the description of the energy of an excited state. 

The magnitude of error of the approximation used A, in all cases except for those 
specially noted, does not exceed lo- 6. At such small A the energy value does not 
depend on the parameters of -the functions 1~~). 

In the scattering problem the set of [xi) is added by the function (x I xl > = 
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sin(kx + 6) that provides a correct asymptotic behaviour. Other functions are of the 
form: 

(xlxi) =e-‘lx i = 2,..., N. 

The calculations have been made for p = 0.401696 that corresponds to the potential 
describing the 3S, NN-scattering phase. The phases calculated with the use of four 
functions Ixi) are presented in Table II. For selection of the solution we used the 
functional @, . The scattering length is found to be a = 5.06fm (The exact value 
quoted in [2] u = 5.47fm). 

The results presented demonstrate that the proposed method may be more effec- 
tive than the finite-difference scheme for solving some problems of quantum 
mechanics. The efficiency of the method is higher, the greater information is 
available on the solution properties, For multidimensional problems of quantum 
mechanics, i.e., a many-body problem, information available on the solution may 
reduce laborious work in calculations as compared with finite-difference methods, 
the complexity of which rapidly grows with increasing dimensionality. 

The applicability of the presented method goes further than the examples 
described above. An approximation of this kind can be applied to more involved 
boundary-value problems with more complicated differential operators. The 
division of the complete operator into an approximated and nonapproximated part 
is arbitrary and rests merely on the will to do calculations as simple as possible. 

TABLE I 

2 
K,R K: 

0.001 0.24900 0.24900 
0.0025 0.24750 0.24751 
0.005 0.245025 0.24503 
0.007143 0.242925 0.24293 
0.01 0.240225 0.24015 
0.0125 0.237725 0.23773 
0.01667 0.233750 0.23374 
0.025 0.22590 0.22590 
0.03333 0.218275 0.21827 
0.05 0.203525 0.20353 
0.071429 0.18560 0.18561 
0.1 0.16340 0.16340 
0.125 0.145450 0.14546 
0.16667 0.118425 0.118440 
0.25 0.07405 0.07407* 
0.357143 0.033775 0.03377* 
0.5 0.005143 0.00515* 

0.06150 0.06154 
0.060025 0.06006 
0.05765 0.05767 
0.05565 0.05568 
0.053075 0.05310 
0.05090 0.05088 
0.047375 0.04738 
0.040875 0.04096 
0.0350 0.03501 

0.024965 0.02496 
0.014985 0.01498 
0.00605 0.00607** 
0.001698 0.00171*** 

Note. K& and K:, are binding energies of the ground and an excited state obtained in [ 11; ~,j and K: 

represent the present calculations; the index * stands for the result obtained with the use of a set of 4 
functions Ix,); ** with 5 functions Ix,), A = 5. 10-6; *** with 5 functions jxi), A = 1 .66. lo-‘. 
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TABLE II 

E(MeV) 6 #I) @a 

176 0.7604 0.7289 0.7770 
152 0.7928 0.7701 0.8080 
104 0.8810 0.9064 0.9080 
72 0.9725 1.0055 1.0104 
48 1.0803 1.1191 1.1548 
24 1.2818 1.2448 1.2432 
12 1.5053 1.4872 1.4728 

Note. 6 is the scattering phase calculated in [Z]; 6 “%epresent phases calculated in this work with 
different accuracy in the search of the minimum of the functional Qr. 
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